Physical characterisation of microporous and nanoporous polymer films by atomic force microscopy, scanning electron microscopy and high speed video microphotography
نویسندگان
چکیده
We report studies of ordered microporous and nanoporous polymer films formed by the evaporation of polymer solutions following exposure to a humid atmosphere. High speed microphotographic (HSMP) studies of the formation process showed that near the surface of the polymer solution, vapour condensation produced near mono-disperse water droplets which form a close-packed monolayer (or ‘breath figure’). Following the evaporation of the solvent, characterisation of the solid by Atomic Force Microscopy and Scanning Electron Microscopy revealed that the surface of the polymer film is characterised by extensive regions of hexagonally close-packed microscopic pores, whose spatial arrangement replicates that of the initial droplet monolayer. Characterisation of sections of the film by Atomic Force Microscopy established that the surficial pores represent open sections of sub-surficial spheroidal cavities formed by encapsulation of the water droplets within the polymer solution. An interesting feature of the results is the occurrence of nano-scale pores at the film surface and at (and within) the walls of the sub-surficial microscopic pores. This is the first physical evidence report of such features in porous polymer films produced by a process involving breath-figures. Their dimensions suggest that more detailed structural investigations will require alternative techniques to conventional, optical methods.
منابع مشابه
Band-Gap Tuning Of Electron Beam Evaporated Cds Thin Films
The effect of evaporation rate on structural, morphological and optical properties of electron beam evaporated CdS thin films have been investigated. CdS thin film deposited by electron beam evaporation method in 12nm/min and 60nm/min evaporation rates on glass substrates. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and Atomic Force Microscopy were used to character...
متن کاملEnhanced Physical Properties Of Indium Tin Oxide Films Grown on Zinc Oxide-Coated Substrates
Structural, electrical and optical properties of indium tin oxide or ITO (In2O3:SnO2) thin films on different substrates are investigated. A 100-nm-thick pre-deposited zinc oxide (ZnO) buffer layer is utilized to simultaneously improve the electrical and optical properties of ITO films. High purity ZnO and ITO layers are deposited with a radio frequency sputtering in argon ambient with plasma p...
متن کاملFeasibility of Polysulfone as Base Polymer in a Polymer Inclusion Membrane: Synthesis and Characterisation
Polysulfone was investigated as an alternative base-polymer for polymer inclusion membranes (PIM’s) that could withstand harsh environmental conditions and have good transport efficiency of metal ions. PIM’s were prepared using polysulfone as a base polymer and Aliquat 336 as a carrier in the absence of a plasticizer. Chromium (VI) was used as standard to study the extraction efficiency of the ...
متن کاملInvestigation of Physical Properties of e-Beam Evaporated CdTe Thin Films for Photovoltaic Application
CdTe thin films with 2.8 µm thickness were deposited by electron beam evaporation method. X-ray diffraction, scanning electron microscopy, UV-Vis-NIR spectroscopy and atomic force microscopy (AFM) were used to characterize the films. The results of AFM analysis revealed that the CdTe films have uniform surface. CdTe thin films were heat-treated by SnCl2 solution. Structural analysis using XRD s...
متن کاملMorphological and adhesive properties of polypyrrole films synthesized by sonoelectrochemical technique
This paper presents sonochemically deposited polypyrrole films and their characteristics of adhesion on substrate with related to the surface roughness and morphology by comparing to the conventional films deposited electrochemically. In particular, the use of high frequency sonication (500 kHz) for sonoelectrochemical deposition of polypyrrole was reported for the first time. Chronocoulometry ...
متن کامل